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Abstract High stocking densities on grazed pastures

may promote nitrous oxide (N2O) loss from soil to the
atmosphere. However, studies of N2O fluxes in cool-

season pastures of North America are lacking. We

performed two experiments in which measured N2O
fluxes were bootstrapped with re-sampling (n = 100,

with 10,000 iterations), which allowed us to generate an
empirical distribution of mean fluxes to understand how

pasture management strategies might affect N2O

emissions. In Experiment 1, N2O fluxes were estimated
in southern Wisconsin pastures under rotational grazing,

continuous grazing, haymaking, and no agronomic

production. Nitrous oxide fluxes were significantly
positive under rotational grazing at our research farm

[21.6 (se = 10.3) lg m-2 h-1], but not significantly

different than zero under the other three treatments or
rotationally grazed paddocks across eight working

farms. In Experiment 2, we measured N2O fluxes in

eastern Nebraska before, during, and after two rotational

grazing events under two N-input treatments—inor-
ganic N fertilizer and supplemented dried distillers

grains—and an unfertilized control. Nitrous oxide

fluxes were positive (20–100 lg m-2 h-1) in periods
following rain, but otherwise not significantly different

than zero. Post-grazing, N2O emissions were lower from
the control than fertilized or supplemented treatments.

These experiments show cool-season pastures can be a

source of N2O to the atmosphere, but primarily
following grazing events that coincide with significant

precipitation. However, even though on-farm paddocks

are in varying states of recovery from defoliation, farm
scale emissions, although episodic, are likely to be

positive in years with above average precipitation.
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Abbreviations
ARDC University of Nebraska-Lincoln

Agricultural Research and Development
Center

AU Animal units

CONT Continuous grazing
DDGS Corn-based dried distillers grains with

solubles

FERT Inorganic N fertilizer
HARV Harvest

MIRG Management-intensive rotational grazing

NOFERT Unfertilized control
NONE No agronomic management

SUPP Supplemented dried distillers grains

UIP Undegradeble intake protein

Introduction

The atmospheric concentration of nitrous oxide (N2O)

has rapidly increased since the Industrial Revolution
concomitant with agricultural intensification (IPCC

2001), and more recently (1990–2012) global N2O

emissions from agriculture have increased 9 % (IPCC
2013). Many have pointed to managed grasslands as a

land use that may mitigate increasing greenhouse

gases in the atmosphere because of their potential to
sequester C (Allard et al. 2007; Conant and Paustian

2002; Conant et al. 2001; Follett et al. 2001).

However, N2O losses from pastures may offset their
ability to buffer global climate change (Conant et al.

2005; Flechard et al. 2005; Oenema et al. 2005).

Alternatively, grasslands may be a sink for N2O under
very low redox potential (for a review see Chapuis-

Lardy et al. 2007).

Grazing on pastures is known to promote N losses
in Europe and Oceania (Ruzjerez et al. 1994; Williams

et al. 1998) and reports from New Zealand and

Australia show that grazing management can sig-
nificantly modify C and N greenhouse gas fluxes to the

atmosphere (Luo et al. 2000; Ross et al. 1995;

Ruzjerez et al. 1994), however, similar studies of
cool-season grass-dominated pastures of North Amer-

ica are lacking. The type, intensity, and frequency of

defoliation are likely to influence gaseous N loss by
affecting the quantity and quality of plant biomass,

soil solution nitrate, water-filled soil pore space, and

soil temperature (Livesley et al. 2008; Uchida et al.
2008).

In general, pasture application of inorganic N

occurs as ammonium nitrate or ammonium sulfate
and is spread in a relatively uniform manner with

mechanical devices. Typical recommendations for N

subsidy to temperate pastures are 50–100 kg ha-1 y-1

of N split into spring and fall applications. The amount

of N applied as fertilizer to cool-season grasses is often

in excess of plant uptake (Mosier 2001) and the
apparent N recovery rate can be as little as 17–50 %.

Nitrogen use efficiency can be improved by increasing

N retention, targeting N application to better coincide
with plant demand, and/or reducing N inputs (De Vries

and Bardgett 2012). In growing animals, retention of

N can be increased by improving body weight (BW)
gain through supplementing energy and undegradable

intake protein (UIP) to forage-based ruminant diets

(Greenquist et al. 2011; Klopfenstein et al. 2001; Lake
et al. 1974). Corn-based dried distillers grains with

solubles (DDGS) are a good source of both energy and

UIP and improve average daily gain of beef cattle
grazing forages (Greenquist et al. 2009; Loy et al.

2007). Supplementing cattle on pasture with DDGS

also effectively acts as N fertilization because DDGS
is high in N (5 % DM) and excess N is excreted in

the urine. Supplementing cattle on pasture at

2–3 kg head-1 d-1 can result in a N fertilization rate
of 35–40 kg ha-1 (see Greenquist et al. 2011).

Nitrogen inputs from excreta and the subsequent

effects on N losses to the atmosphere are extremely
patchy at scales from centimeters (Koops et al. 1997)

to hundreds of meters (Jackson et al. 2007). This

spatial heterogeneity makes it very difficult to
accurately quantify N losses to the atmosphere

(Groffman et al. 2006).

Livestock grazing of pastures is a growing
phenomenon in the Midwest and eastern Great Plains

of the United States. Jackson-Smith et al. (1996)

estimated that about 7 % of all dairy farms in
Wisconsin maintained some form of grazing as a

management strategy in 1993. An update to this study
indicated this estimate had grown to 26 % by 2005

(Brock and Barham 2009). A particular form of

grazing, management-intensive rotational grazing
(MIRG), which entails livestock grazing in relatively

small paddocks at high densities [50–150 animal units

(AU) ha-1], but for short durations (1–3 days), has
been touted as beneficial to both graziers and grazers
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(Paine et al. 2000). However, many of those claiming
to use MIRG actually graze in ways that are similar to

continuous or extensive grazing (Ostrom and Jackson-

Smith 2000), where animals are moved infrequently.
Using two university owned research properties

with pasture infrastructure and ongoing pasture

research, as well as eight privately owned grass based
farms, we explored two questions relevant to manage-

ment of temperate grasslands dominated by cool-

season grasses: (1) Are N2O fluxes from these
grasslands positive, negative, or neutral? and (2) Does

management of these pastures affect the size and

direction of these fluxes? Our approach was to assess
patterns at a management-relevant scale. We did this

with two experiments, one assessing harvest manage-

ment effects and the other examining combinations of
time-since-grazing and N inputs.

Methods

Experiment 1—harvest management effects
on N2O fluxes

In August 2004 we implemented a randomized
complete block design with three blocks and four

treatments: MIRG, CONT, HARV, and NONE

(management-intensive rotational grazing, continuous
grazing, harvesting grass for hay, and ungrazed/fallow

land, respectively) at the Franbrook Farm, a Uni-

versity of Wisconsin (UW) research property located
25 km south of Madison, WI, USA (42"4401700N,

89"4501300W and 265–320 m asl). Annual precipita-

tion averaged 930 mm, of which 100 mm is from
snow, from 1971 through 2000. During the same

period, the average minimum (January) temperature

was -7 "C and the maximum (July) was 22 "C. The
plots on which we worked were historically cropped

annually in a tilled maize-soybean rotation, but

intermittently grazed perennial pasture was estab-
lished in 1998 and remained in place through this

study period (2004–2005).
Soils of Franbrook are *90 cm deep and are

classified as Otter silt loam (Cumulic Endoaquolls),

Arenzville silt loam (Typic Udifluvents), and Hunt-
ville silt loam (Cumulic Hapludolls) which are mesic,

fine-silty, mixed, superactive soils derived from

sandstone and limestone parent material. Herbaceous
vegetation on this site was dominated by C3 grasses

[Poa pratensis L. (Kentucky bluegrass), Phleum
pratense L. (timothy), Dactylis glomerata L. (orchard

grass), Bromus inermis Leyss. (smooth bromegrass)]

and clovers [Trifolium pratense L. (red clover) and T.
repens L. (white clover)]. In a subsequent study,

aboveground net primary productivity on the grazed

portion of this site ranged from 600 to 1200 g dry
biomass m-2 y-1 (Oates et al. 2011). Total precipita-

tion was slightly higher than normal in 2004

(1015 mm) and much lower in 2005 (645 m or 69 %
of 30-year average). In August 2005, we collected and

composited six soil subsamples from each experi-

mental unit to determine soil texture (particle size
density analysis, Robertson 1999) and total soil C and

N (Flash EA1112, CE Elantech, Lakewood, New

Jersey, USA) (Table 1).
Beginning in August 2004, continuously grazed

paddocks (8.1 ha in each block) were grazed by

separate herds of *25 cow-calf pairs
(1 pair = 1.3 AU) for 28–30 days month-1 (i.e., a

stocking density of *112–120 AU days month-1).

MIRG paddocks (0.6 ha) were grazed at high stocking
densities for 1–2 days (i.e., a stocking density of

54–128 AU days month-1) and then allowed to rest

for the remainder of the month. Monthly grazing
cycles began in August and continued through October

2004 (three grazing cycles), were stopped during

winter, and resumed in late May through October 2005
(five grazing cycles). To simulate the harvesting of

hay (HARV), aboveground biomass was mechanically

clipped and removed from 0.3-ha paddocks in early
July and late August 2005. Finally, we set aside 0.3-ha

paddocks as controls and no agronomic management

was applied (NONE).
No fertilizer was applied to any of the treatment

paddocks in 2003 or 2004. In September 2005,

Table 1 Soil texture, total carbon, and total nitrogen [mean
(±SE), n = 3 per treatment] from 6 composited soil cores
taken from the surface 10-cm in each experimental unit

Parameter MIRG CONT HARV NONE

Soil texture

% Sand 32 (6) 29 (5) 23 (7) 20 (6)

% Silt 54 (5) 57 (1) 64 (6) 69 (4)

% Clay 14 (7) 14 (5) 13 (3) 11 (2)

Total soil C 4.1 (0.3) 3.7 (0.03) 4.6 (0.8) 4.3 (0.4)

Total soil N 0.3 (0.04) 0.3 (0.01) 0.4 (0.1) 0.3 (0.1)
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granular ammonium phosphate (11-44-0) fertilizer
was broadcast applied to the surface at the rate of

57 kg ha-1 of N to all treatment areas except NONE.

In addition to the Franbrook Farm experiment, we
collected N2O from eight grass-based farms that were

known to be practicing MIRG and were located within

50 km of Madison, Wisconsin, USA (Table 2). With
the assistance of the owners at each farm, we located

MIRG paddocks that had been recently grazed by

either dairy cows (three farms), beef cattle (three
farms), or sheep (two farms). Farmers varied the

amount of time animals were in the MIRG paddocks

and sometimes mowed paddocks after animals had
exited in order to stimulate plant production.

Experiment 2—fertilizer, supplementation
and time-since-grazing effects on N2O fluxes

The experiment was conducted at the University of
Nebraska-Lincoln (UNL) Agricultural Research and

Development Center (ARDC) near Mead, NE

(41"804800N, 96"2905200W and 315 m asl). The area is
characterized by a continental climate with an average

maximum temperature of 30.9 "C in July and an

average minimum temperature of -12 "C in January.
The 10-year average annual precipitation for this area

was 693 mm,1 of which 75 % falls in the form of rain

from April through September. The soil type is a
Pohocco silty clay loam (Typic Eutrudept) which is a

fine-silty, mixed, superactive, mesic soil derived in

Peorian loess. The study site consisted of three
pastures of smooth bromegrass which over the

previous 10 years were fertilized annually with

approximately 90 kg ha-1 of N and grazed heavily
in May and October by calves and yearlings.

Crossbred (predominately Angus) steers (330 ±

10 kg) were used in a randomized complete block
design with three blocks and three treatments. The

treatments were (1) paddocks fertilized with 90 kg ha-1

of N in the form of surface applied Urea in early April and
initially stocked with yearling steers at 9.2 animal unit

months (AUM) ha-1 (FERT) (2) non-fertilized pad-
docks initially stocked at 6.4 AUM ha-1 (NOFERT),

and (3) non-fertilized paddocks stocked at the same rate

as the FERT with 2.3 kg DM of corn DDGS

supplemented daily per steer for the entire treatment
period (SUPP). This amount of supplementation (0.58 %

of average BW daily) was slightly greater than that used

by Morris et al. (2005, 2006), who reported improved
animal performance while maintaining complete con-

sumption of the DDGS supplement at amounts of 0.50 %

of BW daily. The stocking rate for the fertilized treatment
was based on longer-term stocking rate records for the

site and UNL extension recommendations (Rehm et al.

1971; Waller 1986). For the non-fertilized treatment,
previous research on pastures adjacent to the experimen-

tal pastures indicated a 30 % decrease in available forage

on non-fertilized compared with N fertilized
(90 kg ha-1) smooth bromegrass (Schlueter 2004).

Within each of the three blocks, treatments were

originally assigned randomly to one of three paddocks
in 2005. Treatment allocation to the individual

paddocks was the same for the July 2007 and May

2008 sampling period. Paddocks were 2.0 ha for
FERT and SUPP, and 2.9 ha for NOFERT and were

grazed from late April through September. Each

paddock was further divided equally into 6 strips to
implement management-intensive grazing. The cattle

were rotated through all six strips in each of five

grazing cycles. The period of stay was 4 days per strip
in cycle 1 and 6 days per strip in cycles 2, 3, and 4.

Period of stay in cycle 5 varied from 4 to 6 days based

on available forage mass.
We used 45 crossbred steers (330 ± 10 kg) that

were blocked by weight and randomly assigned to the

nine paddocks. We used five steers per paddock as
tester animals. To maintain comparable grazing

pressure among treatments and year we used a variable

stocking rate, which was achieved by adding and
subtracting cattle in a put-and-take system. The

number of animals was managed by estimating forage

mass and visual observations of available forage.

Nitrous oxide measurements

At the Franbrook Farm in Wisconsin, we measured

pre-treatment N2O fluxes from all plots in July 2003
and March 2004. Starting in September 2004 and

continuing through October 2005, N2O was measured

the day following each monthly MIRG grazing event.
Measurements at the Wisconsin satellite farms

occurred within 1 week after the MIRG event for

three periods during the 2005 growing season. At
ARDC in Nebraska, we measured N2O for two periods

1 NCDC, National Climatic Data Center for Mead, NE http://
cdo.ncdc.noaa.gov/ancsum/ACS.
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(22 June–16 July 2007 and 17 May–20 June 2008)

from all treatment plots 1 day before, 3 days into, and
five times over a period of about 20 days after each

4-day grazing event.

We used vented, static chambers at all sites to
capture N2O fluxes between the soil and the atmo-

sphere (Livingston and Hutchinson 1994). In each

experimental unit we installed eight circular 25-cm
diameter 9 15-cm deep PVC collars 5-cm into the

ground (Hutchinson and Livingston 2002). Vegetation

was then hand-clipped to 5-cm stubble height. To
avoid disturbance of the sample area, we minimized

trampling during collar installation and waited a

minimum of 30 min to first sampling to allow soil-
atmosphere equilibration. Collars were removed

during grazing events but remained in the ground

until a series of post-grazing measurements were
completed. All measurements were made between

1100 and 1600 h local time.

To initiate gas extraction, a 25-cm diameter 9 20-
cm deep PVC chamber was fitted over an installed

collar. These chambers had 2-mm diameter vents and

a septum for syringe insertion. Once the chamber was
in place, extractions of headspace gas were made over

a 30 min period using a 30-ml nylon syringe and a

23-gauge needle. Gas samples were transferred from
the syringe into 30-ml glass vials fitted with 2-cm

rubber septa. We also collected ambient air and known

gas standards (10 ppm N2O) to assess the potential for
storage degradation between sampling and gas

analysis. Vials were returned to UW-Madison where

they were analyzed for N2O with an electron capture

detector (Shimadzu GC-14B, Shimadzu Analytical
and Measuring Instruments Division, Kyoto, Japan).

For treatment comparisons, constant and linear fluxes

were assumed (Holland et al. 1999; Duran and
Kucharik 2013) and hourly fluxes were calculated by

doubling the calculated 30-min flux. To show relative

comparisons of known environmental factors affect-
ing N2O emissions, soil temperature and volumetric

water content were measured, and inorganic soil

nitrogen concentrations were assayed, at several times
during the measurement period (Table 3).

Data analysis

Estimation of trace gas fluxes is difficult because of

tremendous spatial variability across many scales
(Velthof et al. 1996a). Further complicating the issue,

the temporal distribution of N2O fluxes usually follow

what might be characterized as a log normal distribution
(Velthof et al. 1996b)—with many values near zero and

a very few large fluxes. However, the occurrence of

negative fluxes (i.e., atmospheric N2O entering soils)
makes the usual log transformation of such a dataset for

parametric statistical analyses inappropriate. Therefore,

we made bootstrap estimates of hourly N2O fluxes from
all treatments and sampling times at all sites. For each

treatment within a given dataset (i.e., Franbrook,

ARDC, or on-farm datasets), fluxes were re-sampled
(n = 100, with 10,000 iterations) across blocks to

generate an empirical distribution of mean fluxes. A

Table 3 Environmental factor means (SE) at Franbrook Farm (WI) and the Agricultural Research and Development Center (NE)

Year Site Treatment Soil temp ("C) Volumetric water content (%) NH4 ? (ug N/gdw) NO3 - (ug N/gdw)

2004 Franbrook MIRG 37.9 (0.4) 3.96 (0.86) 0.64 (0.24)

CONT 35.7 (0.2) 5.46 (1.31) 0.76 (0.19)

HARV 34.8 (0.5) 3.43 (1.39) 1.05 (0.32)

NONE 34.0 (0.4) 4.27 (0.71) 0.57 (0.13)

2005 Franbrook MIRG 14.0 (3.0) 25.2 (1.0) 2.44 (0.79) 1.29 (0.62)

CONT 14.2 (3.0) 23.6 (1.1) 2.28 (0.89) 1.74 (0.94)

HARV 13.2 (2.6) 27.5 (0.1) 3.02 (1.37) 1.17 (0.52)

NONE 12.5 (2.6) 27.9 (0.1) 3.13 (1.10) 1.48 (0.67)

2007 ARDC NOFERT 24.3 (1.6) 17.5 (2.9)

FERT 24.3 (1.7) 17.0 (3.0)

SUPP 24.2 (1.8) 18.6 (3.2)

2008 ARDC NOFERT 16.9 (1.9) 26.0 (5.0) 6.14 (1.25) 6.73 (1.68)

FERT 16.4 (2.0) 24.6 (4.6) 8.56 (3.13) 10.7 (8.79)
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treatment was considered to have significant fluxes if the
envelope containing 95 % of the bootstrapped means

(i.e., the interval \97.5 and [2.5 % of the empirical

distribution) did not contain zero (Crawley 2002). While
other approaches to calculating 95 % confidence

intervals around bootstrapped means exist (e.g., bias-

corrected intervals), our empirical distributions were
quite symmetrical and none of our results were marginal

with respect to whether the distribution was different

than zero.

Results

Experiment 1

Nitrous oxide fluxes were significantly positive from

MIRG treatment paddocks at the Franbrook Farm in

2005 (Fig. 1). The bootstrapped mean N2O-N flux was
21.6 lg m-2 h-1. Across eight southern Wisconsin

farms, N2O fluxes from MIRG paddocks were not

significantly different from zero and variability was
similar to the variability within the MIRG treatments

at the Franbrook Farm (Fig. 1). Fluxes of N2O were

not significantly different from zero for the three other
pasture management treatments at Franbrook, but

variability in the NONE treatment was lower than for

CONT and HARV (Fig. 1). Pre-treatment (Jul. 2003

and Mar. 2004) N2O fluxes were positive (Fig. 2).
Once MIRG treatments commenced (Aug. 2004), N2O

fluxes were strongly positive (Sep. and Nov. 2004)

whereas the other treatments were weakly negative.
This pattern disappeared for much of the 2005 season,

but was again evident in Oct. 2005 (Fig. 2).

Experiment 2

The 2007 sampling period at ARDC was very dry while
significant rain occurred during the post-grazing period

of 2008 (Fig. 3). In 2007, two combinations of time and

treatment were significant—SUPP 1 day prior to
grazing was negative and FERT was positive 19 days

post-grazing. The initial two time points were relatively

dry in 2008, so the size of N2O flux was similar to 2007,
but precipitation coincided with the post-grazing

sampling. During this period, N2O fluxes were always

positive with means in the range of 20–100 lg m-2 h-1.
The only separation of treatments occurred in the last

two time points when NOFERT paddocks appeared to

be emitting less than FERT and SUPP.

Discussion

In the 2nd year of our disturbance experiment

(Experiment 1), MIRG promoted N2O emissions to
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Fig. 1 Bootstrapped distribution of mean N2O fluxes in 2005
from four pasture management treatments at the Franbrook farm
(MIRG, Management-intensive Rotational Grazing; CONT,
Continuous grazing; HARV, Harvested for hay; NONE, no

agronomic management) and MIRG paddocks across eight
grass-based farms in southern Wisconsin. Means were calcu-
lated for 100 resamples in 10,000 iterations. Dotted lines bracket
95 % of calculated means from the empirical distributions
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the atmosphere while fluxes from two other harvest
treatments and our control were not significantly

different from zero. Since the three disturbance

treatments all received the same fertilizer inputs, these
results lead us to believe that grazing management has a

stimulatory effect on N2O emissions. This probably

stems from greater nitrification and denitrification as a

result of higher inorganic N availability and/or moisture
in the soil, which arises from a combination of (1)

intense defoliation resulting in less short-term plant

uptake of N and water (Hamilton et al. 2008;
Houlbrooke and Laurenson 2013), (2) inputs of N as

urine (Cameron et al. 2013), and (3) compaction and

pugging of the soil from animals (Houlbrooke et al.
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timing of nitrogen fertilizer
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and HARV only), closed
arrows indicate MIRG
grazing events, and open
triangles indicate HARV
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2011). We did not collect data to separate these
mechanisms.

Fluxes from MIRG paddocks on the eight working

farms were not significantly different from zero. It is
important to note that the N2O emissions we observed

in MIRG plots at the Franbrook Farm always were

measured 1 day following MIRG grazing events.
Differences in sample timing between Franbrook and

the eight farms leads us to suspect rapid decline of

N2O emissions post-grazing such that positive emis-
sions were observed only when we sampled the day

following grazing or that the N inputs on these farms

was not sufficient to result in N2O emissions.
Information about time-since-grazing and fertilizer

application on the eight farms was qualitative and

narrative in form, but generally we measured plots that
had been ‘‘recently grazed’’ in an effort to replicate our

procedure at the Franbrook Farm. All farmers indi-

cated some degree of N fertilizer was applied to their
pastures in the past, but their anecdotal information

about the timing and amount applied was vague and

very general. Stubble heights at the time of sampling
in these paddocks were similar to what we observed at

Franbrook post-grazing (5–15 cm, data not shown),

but several days may have elapsed since grazing in
many cases. This spurred our effort to quantify fluxes

before, during, and for a period after grazing events

(i.e., Experiment 2).
Results from Experiment 2 demonstrate the para-

mount importance of moisture for N2O loss from soil

to the atmosphere. When fluxes were high, they lasted
longer for paddocks receiving exogenous N. That said,

similar to pretreatment Franbrook pastures in 2003,

significant N2O emissions were observed from unfer-
tilized but grazed control paddocks at ARDC. These

observations all point to MIRG paddocks being

sources of N2O to the atmosphere during wet periods
of the growing season, with these contributions being

stimulated by exogenous N.

Van Groenigen et al. (2005) showed that N2O
pulses from soils with controlled rates of applied urine

did not peak until *10 days post-treatment, which
contradicts our interpretation of a rapid (*1 day)

transformation of urine N–N2O. However, this work

occurred on sandy soils with combinations of dung,
urine, and compaction applied by the researchers. Our

silt loams at Franbrook and silty clay loams at ARDC

likely have lower percolation rates, which may have
allowed more rapid microbial transformation of urine

N near the soil surface. Flechard et al. (2005) found
that haying resulted in a spike of N2O emissions that

waned exponentially in the days that followed the

harvest, so the pulse of emissions we observed
immediately following grazing may have been related

to defoliation itself rather than N inputs via excreta.

However, we did not observe emission spikes follow-
ing HARV treatments on our Franbrook site, so this

may be related more to fertilizer regimes on hay fields

as in Flechard et al. (2005) and Hyde et al. (2006).
Our MIRG N2O emissions of 20–100 lg m-2 h-1

were reasonably similar to estimates from other

studies of temperate grasslands. In grass-clover
mixtures in the Czech Republic, Šimek et al. (2004)

estimated N2O emissions of 15 lg m-2 h-1 on fields

being fertilized and harvested for hay. Flechard et al.
(2005) compared intensively managed and grazed to

extensively grazed grasslands in Central Switzerland

and found median N2O emissions of 144 and
72 lg m-2 h-1, respectively. Mosier et al. (2002)

reported N2O emissions of 1.7 lg m-2 h-1 for Color-

ado shortgrass steppe—a much drier system.
MIRG paddocks are in various states of vegetative

recovery from grazing at all times, so N2O fluxes are

likely systematically different throughout a farm from
paddock-to-paddock, covarying negatively with time-

since-grazing. Therefore, a standardized comparison

of grazing systems at the whole-farm level would
assume that a small fraction of all MIRG paddocks are

emitting N2O on a given day. However, during periods

following rain, emissions will likely be positive and
may last longer in paddocks receiving N inputs. The

size and variability of fluxes at the whole-farm level

rendered fluxes not different from zero for the CONT,
HARV, and NONE treatments in our manipulative

study and MIRG paddocks on the working farms we

sampled, but these MIRG fluxes were most likely
moderated by the lag time in sampling after the

grazing event. Sampling 1 day post-grazing on the

MIRG pastures of manipulative Experiment 1, and on
a series of days post-grazing in Experiment 2, indicate

MIRG pastures are a source of N2O to the atmosphere,
especially when fertilization and grazing events

coincide with precipitation. Also, while a farm under

CONT grazing management with no fertilizer applied
is likely supporting relatively low levels of N2O fluxes

at the grazing system level, concentration of livestock

and their excreta in ‘‘camping areas’’ around gates,
shade, and water sources may promote significant N2O
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emissions (Anger et al. 2003; Hynst et al. 2007; Koops
et al. 1997), but this hypothesis deserves further study.

Conclusions

We found pasture systems under management-inten-
sive rotational grazing were a source of N2O to the

atmosphere during periods immediately following

grazing and preciptation events, while other manage-
ment systems—continuously grazed, harvested for

hay, and ungrazed treatments—did not have sig-

nificant N2O emissions. While all pastures exhibited
emission spikes following precipitation, pastures re-

ceiving exogenous N took longer to return to back-

ground emission levels. Inferences from these results
should be limited to the 1–3 days immediately

following intensive grazing of a paddock. Moreover,

while our study included both research and working
farm pastures, the range of grazing management

referred to as MIRG by farmers make generalizations

tenuous.
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